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relationship of occupancy and abundance in a heterogencous landscape at the scale
of local populations, we built a spatio-temporal regression model of populations of
the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data
comprised nineteen years of habitat surveys and snapshot data of land use in the
region. We used variance partitioning to quantify relative contributions of land use,
habitat quality and metapopulation covariates. The model revealed a consistent and
positive, but noisy relationship between average occupancy and mean abundance
in local populations. Patterns of abundance were highly variable across years, with
large uncorrelated random variation and strong local population stochasticity. In
contrast, the spatio-temporal random effect, habitat quality, population connectiv-
ity and patch size explained variation in occupancy, vindicating metapopulation
theory as the basis for modelling occupancy patterns in fragmented landscapes.
Previous abundance was an important predictor in the occupancy model, which
points to a spillover of abundance into occupancy dynamics. While occupancy
models can successfully model large-scale population structure and average occu-
pancy, extinction probability estimates for local populations derived from occu-
pancy-only models are overconfident, as extinction risk is dependent on actual, not
average, abundance.
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Introduction

Observed declines in insect abundance around the world
remind us of the importance of understanding changes in
species’ abundance in addition to looking at range shifts and
population extinctions (Conrad et al. 2006, Shortall et al.
2009, Cameron et al. 2011, Koh et al. 2016, Hallmann et al.
2017). At the same time, deficiencies in some studies highlight
the challenges in analyzing and interpreting population dynam-
ics of as diverse and dynamic a group as insects (Georgina et al.
2015, 2016, Komonen et al. 2019, Sdnchez-Bayo and
Wyckhuys 2019, Thomas et al. 2019).

Occupancy and abundance patterns both arise from
spatio-temporal variation in growth rates and dispersal.
Notably, ecological theory does not assert that distribution,
occupancy and abundance respond similarly to variation in
environmental conditions, as they are different functions of
those population dynamic processes. Spatio-temporal varia-
tion in the environment leads not only to variation in the
dispersal and local growth rates, but the relationship between
them. Especially where density-dependence affects growth
and dispersal, this could lead to different relationships
between occupancy, distribution and abundance. While
ecological studies demonstrate that these population mea-
sures are often correlated (Gaston et al. 2000, Cowley et al.
2001), this does not imply that their relationship is fixed
across different contexts and taxa (Holt et al. 2002) or
driven by the same processes. Suggested mechanisms that
give rise to different, mostly positive, occupancy—abundance
relationships both within and among species include for
example sampling processes, metapopulation dynamics, spe-
cies-specific environmental responses and spatial variation in
habitat quality (Hanski 1991, Hanski and Gyllenberg 1997,
Freckleton et al. 2005, 20006).

In applied spatial ecology, the availability of methods and
darta often limit us to analyses not derived from assumptions
about species’ demography. Consequentially, these methods
often introduce implicit relationships between occupancy and
abundance into our analyses. Species distributions and occu-
pancy models usually use only occupancy data and model
patterns instead of demographic processes (Pearce and Ferrier
2001, Sileshi 2007, Keith et al. 2008, Duff et al. 2012).
Although species distribution models built on abundance
data give a more detailed view of the relationship between
population density and the environment (Kallasvuo et al.
2017), they still implicitly assume a simple relationship
between patterns of occupancy and abundance (Sileshi et al.
2009, Dallas and Hastings 2018). Models of abundance con-
ditioned on covariates that use for example a Poisson or nega-
tive binomial distribution yield occupancy probabilities as a
simple function of the distributional form (Holt et al. 2002).
In environments where dispersal is not a limiting factor and
there is no strong spatial correlation in habitat quality, such
simple relationships can be reasonable approximations, but in
fragmented landscapes where occupancy is a function of both
colonizations and local population dynamics, we should not

let this assumption stand untested. Even models grounded
directly in population ecology — such as the stochastic patch
occupancy models of metapopulation ecology — make simpli-
fications that limit the ability of models to distinguish how
environmental variation or interspecific interactions can lead
to diverging patterns of occupancy and abundance (Keeling
2002, Etienne et al. 2004). These models, which are fit to
records of presence and absence of the study species, often
assume a simple relationship between carrying capacity and
patch characteristic, such as area and habitat quality, and use
this relationship as the basis of extinction probabilities. More
principled patch occupancy models derive a surrogate of
population size from an underlying individual based model,
but ignore stochastic variation in that size (Ovaskainen and
Hanski 2004b). In both cases, if the model includes envi-
ronmental effects on occupancy they also implicitly affect
abundance in a predetermined fashion, unless the model
distinguishes between environmental effects on dispersal and
local reproduction (Harrison et al. 2011). Such deficiencies
are most critical when predicting under novel environmental
conditions and outside a species’ current range. An extreme
example are bioclimatic envelope models lacking any popula-
tion dynamic component that are used to predict range shifts
under climate change (Aragjo et al. 2005, Lewthwaite et al.
2018), in spite of the availability dynamic alternatives
(Keith et al. 2008, Buckley et al. 2010, Leroux et al. 2013).
Here, we apply joint occupancy—abundance modelling
to the long-term demographic survey of the Glanville fricil-
lary in the Aland Islands (Ojanen et al. 2013). We assess how
occupancy and abundance respond to environmental hetero-
geneity in this large metapopulation. The data combine reli-
able demographic surveys of the number of larval groups in
local populations and details on habitat quality with a com-
paratively large spatial extent suitable for understanding the
relationship between occupancy and abundance in a heteroge-
neous landscape. We study how the spatial structure of habi-
tat, population dynamics, habitat quality and the composition
of the landscape contribute to occupancy and abundance and
how these contributions differ at the level of local populations
in the metapopulation. The choice of study system governs
our expectations. Given the host—plant specificity of the but-
terfly’s larval stages and the classic metapopulation structure of
the populations, we expect to see large effects of variation in
habitat quality, patch size and the connectivity of the habitat.
We expect less pronounced effects of land use as effects of land
use are mediated by direct measures of habitat quality. Still,
land use is expected to have a more direct role through effects
on dispersal (DiLeo et al. 2018). Comparing occupancy and
abundance, we expect that occupancy be largely determined
by landscape structure, that is, the distribution of habitat and
land use, while local variation in the habitat, especially in terms
of area and quality would be more important for abundance.
We use a hurdle model with a spatio-temporal random
effect to account for potentially confounding unobserved
variation and spatio-temporal correlation between our obser-
vations. The model captures some elements of population

307



dynamics and is simple enough to fit large data sets. The
random effects in the model help quantify how unexplained
variation is structured and reflect a lower bound on the
uncertainty that our model would carry over when extrapo-
lating into different environments. As the study is observa-
tional, we cannot interpret covariate effects causally. Instead,
we use variance partitioning to quantify which factors matter
in our study system and how much we can potentially expect
to explain in other systems. We batch our covariates into
classes that group together related covariates in terms of what
they represent and where they are measured. This allows us to
draw more general conclusions than from individual covari-
ates whose effects are more likely species and site dependent.

Material and methods

Study system

We study the metapopulations of the Glanville fritillary but-
terfly (Melitaea cinxia Linnaeus 1758, family Nymphalidae)
in the Aland Tslands in the Baltic Sea. At this northern range
margin the butterfly has a single generation per year with
adults emerging in late May or early June and the flight sea-
son lasting for approximately one month (Hanski et al. 1994,
Nieminen et al. 2004, Kahilainen et al. 2018). The larvae
live in family groups and overwinter in conspicuous tent-like
silken nests that they build late in the summer or in early
fall (Hanski et al. 1995, Kuussaari and Singer 2017). Though
endangered in Finland, the species is not under strict protec-
tion (Hyvirinen et al. 2019).

In the Aland Islands, the butterfly inhabits networks of dry
meadows, pastures, roadsides and rocky outcrops where one or
both ofits larval host plants, ribwort plantain Plantago lanceo-
lata and spiked speedwell Veronica spicata, grow (Hanski et al.
1994). The study area, surveyed annually since the 1993, cov-
ers about 50 X 70 km? with over four thousand potential habi-
tat patches known to date. The butterfly occupies annually
between 1 and 30 percent of the habitat patches with annual
turnover usually comprising between 50 and 200 extinctions
and colonizations (Hanski et al. 1995, Ojanen et al. 2013).
The system has become a model for study of metapopulation
dynamics (Hanski et al. 1995, Hanski 1999, Nieminen et al.
2004, Ovaskainen and Saastamoinen 2018).

Every September surveyors visit most of the habitat
patches to measure habitat quality and count the number of
the butterfly’s larval nests (Hanski et al. 1995, Ojanen et al.
2013). The probability of detecting at least one nest in an
occupied habitat patch is 70-90 percent (Hanski et al. 1995,
2017, Nieminen et al. 2004, Ojanen et al. 2013). As inten-
sive resurveys for undiscovered habitat in 1998 and 1999
found over two thousand new habitat patches (Ojanen et al.
2013), we restrict our study to the more complete data col-
lected since year 2000. The data comprise 62 659 patch
observations spanning a 19-yr period. The records include
9780 observations of occupied patches.
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Land use data

We obtained land use data from the National Land Survey of
Finland’s (NLS) Topographic database (acquired 08/2017).
They represent a recent snapshot of the landscape state. We
restricted ourselves to land use and land cover data repre-
sented by the categories Terrain/1, Terrain/2 and Road net-
work in the Topographic database. We simplified the land
use classification to reduce the number of land use covari-
ates. The resulting data include agricultural fields, horticul-
ture, meadows, marshes and bogs, open water bodies, built
and recreational areas, and roads (Supplementary material
Appendix 1 Table Al). Over half of the agricultural fields in
the region produce hay for ensilage and pasture. Other major
field crops include various cereals, while apple orchards dom-
inate horticultural land use. Additionally, we include data on
forested areas from the 2011 Multi-source National Forest
Inventory provided by the National Resources Inst. Finland.
We excluded open bogs from our forest class as they are cither
treeless or only sparsely forested (Mikisara et al. 2016).

Covariate categorization

To study how different aspects of the landscape affect occu-
pancy and abundance of the butterfly, we group our covari-
ates into four categories: population (P), metapopulation
(M), habitat quality (H) and land use (L). We also divide our
covariates in terms of their spatial scope, that is, whether they
are measurements from within the habitat patch or from the
surrounding landscape (Fig. 1).

The local population covariates (P) include population
size (number of larval nests) and occupancy status in the
previous year. The metapopulation covariates (M), habitat
patch area and population connectivity, are considered the
primary predictors of occupancy in metapopulation ecology
(Hanski 1999). We use a model based connectivity measure,
which comprises the individual immigrant contributions
from all other patches based on their spatial configuration,
area and population size in the previous year (Hanski 1994,
Supplementary material Appendix 2).

The habitat quality covariates (H) include an ordinal mea-
sure of the abundance of either of the host plant species, a
binary indicator for the simultaneous presence of both host
plants, the proportion of desiccated host plants, the propor-
tion of grazed vegetation in the habitat patch, and an indica-
tion of the presence of powdery mildew Podosphera plantaginis
on the host plant Plantago lanceolata (Ojanen et al 2013).
We simplified the habitat quality measures for the analyses
(Supplementary material Appendix 3).

The land use covariates (L) include three measures for
each land use class: 1) proportion in the habitat patch, 2)
proportion outside the patch edge in a 10-m buffer and 3)
distance weighed proportion in a large buffer around the
habitat patches (Aue et al. 2012, Chandler and Hepinstall-
Cymerman 2016, Miguet et al. 2017). Land use within the
patch can capture aspects of habitat quality not recorded
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Figure 1. Posterior means of the standardized effect sizes of the occupancy and abundance model’s covariates. The boxes show the 80%
credible intervals and the whiskers extend to the 95% credible interval. Blue depicts effects that pertain to the habitat patch and orange
depicts landscape-based effects. The label and background colours depict the covariate classes.

during the surveys, while the land use at the edge of the
patch can have direct effects on habitat microclimate, for
example through shading, and also impede or facilitate
immigration and emigration of adult butterflies. Land use
in the wider surrounding area can capture effects of land-
scape composition on long-distance dispersal or larger
microclimatic conditions. The scales of the environmental
effects may vary among the covariates (Martin and Fahrig
2012), but given the large number of covariates included in
our study we opted for simplicity and used the same fixed
parameters for the distance weighing function for all land
use classes (Supplementary material Appendix 4). Of the
resulting landscape composition measures, originally three
per land-use class, we kept only those that occurred in at
least one percent of all observations.

Model

We used a hurdle model to separate the effect of envi-
ronmental variation on butterfly occupancy and abun-
dance (Welsh et al. 1996). Due to the fast turnover in the

metapopulation and variation in habitat patch isolation,
absences are not necessarily indicators of unsuitable habitat.
Thus, we exploit the structure of the hurdle model to distin-
guish processes that govern occupancy and abundance. The
occupancy component mimics the colonization—extinction
dynamics of the metapopulation while the abundance com-
ponent should reflect the effects of site characteristics on local
reproductive performance.

We apply a generalized linear modelling approach to
model occupancy and abundance as a linear combina-
tion of covariates, independent yearly and per-patch ran-
dom effects, and a spatiotemporal random effect. We
model abundance y with a negative binomial distribution
and occupancy with a Bernoulli distribution. The model
is then

Negative binomial(yi |7H-’ n)
1— Negative Binomial CDF(OPLI., n)
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where

logit(ei)inBD+ﬂo (i)+u, (tl.)+zo(.cl.,ti) (2)

10g(7»1.)=Xl.[3tZ +a, (z')+uﬂ (tl.)+zﬂ (si,t,.) (3)

and y, is the abundance measured as the observed nest
count, 0 is the probability of presence, A the expected but-
terfly abundance in an occupied patch, X is a matrix with
covariates in its columns, , and B, are mutually independent
column vectors with covariate weights, 2, and «, are mutu-
ally independent per-patch iid random effects, #, and #, are
mutually independent yearly iid random effects, z, and z,
are mutually independent spatio-temporal random effects,
s is a vector of observation coordinates, # is a vector of obser-
vation years, 7 is the overdispersion parameter. The random
effects represent unmeasured variation at the level of patches
(@), unmeasured large-scale variability between the years (x)
and unmeasured spatio-temporally correlated variation (z);
the overdispersion parameter 7 can also be interpreted as a
per-observation random effect representing, for example,
unmeasured environmental stochasticity (Lindén and
Mintyniemi 2011). The use of the above hurdle model,
where the likelihood terms for zero and greater than zero
observations are separable, is justified by the high rate of
detection in the survey, which ensures a low proportion
of false absences in the data and minimizes the effects of
potential variation in detection rates (Bried and Pellec 2012).

We gave independent A/(0,+/10) priors for all the linear
weights except for the intercept, which had a A/(0,/100)
prior. All covariates were normalized to have standard devia-
tions of one and a mean of zero. Before normalization, we
log transformed patch area and connectivity and log(x+1)
transformed host plant abundance (vegetation), and previous
population size. We implemented the model using R-INLA
(ver. 18.07.12, Supplementary material Appendix 5) which
provides efficient approximate computation for a wide class
of latent Gaussian models (Rue et al. 2009, Lindgren et al.
2011, Lindgren and Rue 2015).

Partitioning of variation

To quantify the contribution of different measures of land-
scape heterogeneity to butterfly occupancy and abundance,
we examine how much the covariates in each covariate cat-
egory (B M, H and L) and the random effects contribute to
the total posterior variation in the linear predictors logit(6)
and log(A). This corresponds to the ‘finite-population’ view
of Bayesian analysis of variance (Gelman et al. 2014). In
the spatio-temporal modelling context, Yuan et al. (2017)
used this method for exploratory model checking, while
Ovaskainen et al. (2017) applied it in hierarchical mod-
els in community ecology. As our study system consists of
a discrete set of populations, we calculate the measure over
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all observation units (Supplementary material Appendix 6).
To understand how the different components of the model
contribute to explaining variation within and among patches,
we also partition the observations by patch and apply the law
of total (co)variance to calculate within- and among-patch
variances for all components over all patches (Table 2).

Results
Covariate effects

Overall, the population, metapopulation and habitat quality
covariates had clear effects on occupancy and abundance
(Fig. 1, Supplementary material Appendix 6 Table A2). Of
the population covariates, the size of the population in the
previous year increased occupancy probabilities; previous
occupancy status alone had no discernible effect. The odds
of occupancy when comparing a patch with ten larval nests to
a patch with only one nest in the previous year are over two
and half times higher (Fig. 2). While both size and occupancy
of the population in the previous year increased abundance,
population size in the previous year had clearly a stronger
effect and together with habitat patch area it was the covariate

Relative odds of occupancy

40-

30 °

Odds ratio

1 10 20 30 40 50 60 70
Previous population size

Figure 2. Estimated ratio of odds of occupancy for populations with
a single nest the year before compared to odds of occupancy for
other population sizes. The posterior mean is marked with a solid
line and the 95% credible interval with dashed lines. The circles
show observed odds ratios with circle radii proportional to the log
of the number of observations with that population size in the

OR b (x) — (”yl,l=xv}a>o +0.5)/(7l%71:x1y’:0 + 05)] .

(00,0 +05)/ (7, 1210 +0.5)

Population sizes represented by less than four observations in the
numerator are excluded.
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with the strongest effect. Habitat patch area had a larger effect
than population connectivity for both occupancy and abun-
dance (Fig. 1). Of the habitat quality covariates, host plant
abundance (vegetation in Fig. 1) had the strongest effect, and
for the occupancy model, it was overall the most important
covariate. Simultaneous presence of both host plant species
(both hosts in Fig. 1) was additionally associated with higher
abundance and probability of occupancy. A higher propor-
tion of dry or desiccated host plant vegetation, as assessed
during the fall survey, was associated with slightly higher
occupancy probabilities. Similarly, the presence of a pow-
dery mildew infection on the host plant Plantago lanceolata
increased occupancy and abundance slightly. Intense grazing
of habitat predicted a drastically reduced occupancy proba-
bility and slightly lower abundance. In contrast, the presence
of grazing itself slightly increased occupancy and abundance.

Land use covariates had mostly minor effects, except for
the effects on occupancy of land use outside of the habitat
patches (Fig. 1). Forests and agricultural land in the sur-
rounding areas, and agricultural land and rocky areas along
the edges of the habitat patches increased patch occupancy,
while surrounding built-up areas decreased it. Paved roads
increased occupancy probabilities generally as did unpaved
roads in the surrounding areas. The butterfly abundances
were also slightly higher in patches surrounded by forests.
Agricultural land use within the patch increased abundance,
while its presence in the surroundings decreased it. Unpaved
roads decreased abundance when they passed through the
actual habitat patch.

Variation explained

Most variation in occupancy patterns was explained by the
yearly iid and spatio-temporal random effects (posterior
mean 0.40, Table 1). In contrast, the patch level random
effect had only a minor role. Overall, processes related
to the landscape were more important than variation of
measures pertaining only to the habitat patches them-
selves (0.54 versus 0.28). Yet, habitat quality was the most

important covariate class in terms of variation explained
(0.14). Metapopulation covariates, land use outside of the
patches, and population covariates each explained only
a few percent of variation, while land use within habitat
patches had no discernible effect. The spatio-temporal ran-
dom effect correlated with population and metapopulation
covariates (posterior means 0.33 and 0.35, Supplementary
material Appendix 6 Table A3) and the population, meta-
population and habitat quality covariates correlated with
each other (0.26-0.40). The spatio-temporal random field
correlated strongly with connectivity and the population
covariates (posterior mean correlations 0.64 and 0.33,
Supplementary material Appendix 8 Table A3, Fig. A2),
which had a particularly strong effect on the results: Both
explained only two percent of variation in occupancy, but
of all the covariates had the highest correlations with the
linear predictor logit(0) (squared mean posterior correla-
tion 0.36, Supplementary material Appendix 8 Table A5,
Fig. A2) suggesting strong confounding between connec-
tivity, the population covariates and the spatio-temporal
random effect in the occupancy model.

Random effects related to the whole landscape accounted
for the largest proportion of the variation in abundance
(posterior mean 0.41, Table 1), but in contrast to occu-
pancy also patch level random variation was important
(0.11). In general, the contributions of patch level and
landscape wide processes were almost equal in explaining
variation in abundance (0.40 and 0.46). Both population
covariates and metapopulation covariates explained a large
proportion of variation (0.13 and 0.12). Habitat quality
was less important than for occupancy, and just as land
use in the landscape, it explained five percent of variation
in abundance. The patch and yearly random effects corre-
lated with population covariates (posterior means 0.20 and
—0.22, Supplementary material Appendix 6 Table A4), but
the spatio-temporal random effect had only low correlations
with the other components. The population, metapopula-
tion and habitat quality covariates correlated with each
other (posterior means 0.20-0.46).

Table 1. Proportion of variation in the linear predictors (eq. 2-3) explained by their components. The 95% credible intervals are below the
mean value in each cell. The totals for each model sum to one when accounting for covariance between the components.

Occupancy Abundance
Patch Landscape Patch Landscape

Random effects 0.03 0.40 0.11 0.41

0.02-0.04 0.36-0.43 0.09-0.13 0.38-0.44
Population covariates 0.02 0.13

0.02-0.02 0.11-0.16
Metapopulation covariates 0.03 0.02 0.09 0.03

0.02-0.04 0.01-0.03 0.07-0.12 0.01-0.05
Habitat quality covariates 0.14 0.05

0.13-0.15 0.04-0.06
Land use covariates 0 0.03 0.01 0.05

0-0 0.02-0.03 0-0.02 0.03-0.07
Total 0.28 0.54 0.40 0.46

0.26-0.30 0.52-0.57 0.37-0.44 0.43-0.48
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Table 2. Proportion of variation within and between patches as explained by the components of the linear predictors (2-3). The 95% credible
intervals are below the mean value in each cell. The totals on the final row give posterior estimates of the variation due to within and among

patch variability in occupancy and abundance.

Occupancy Abundance
Within Among Within Among

Random effect: patch 0.03 0.11
0.02-0.04 0.09-0.13

Random effect: year 0.10 0.00 0.13 0.03
0.08-0.12 0.00-0.00 0.11-0.16 0.02-0.03

Random effect: spatial 0.10 0.20 0.17 0.08
0.09-0.12 0.17-0.23 0.15-0.19 0.06-0.09

Population covariates 0.01 0.01 0.08 0.05
0.01-0.01 0.01-0.01 0.06-0.10 0.04-0.07

Metapopulation covariates 0.01 0.05 0.01 0.13
0.00-0.01 0.04-0.06 0.01-0.02 0.11-0.16

Habitat quality covariates 0.07 0.07 0.02 0.03
0.07-0.08 0.06-0.07 0.02-0.03 0.02-0.04

Land use covariates 0.03 0.04
0.02-0.03 0.03-0.06

Total 0.33 0.67 0.38 0.62
0.31-0.35 0.65-0.69 0.36-0.40 0.60-0.64

Differences between occupancy and abundance

Metapopulation covariates were important for explaining
differences among patches, while population and habitat
quality covariates contributed almost equally to within- and
among-patch variation (Table 2). For within-patch variation
in occupancy, the yearly and spatio-temporal random effects
and habitat quality explained most variation, while the yearly
and spatio-temporal random effects and population covari-
ates explained most within-patch variation in abundance.

Variation in the occupancy and abundance models was
higher among patches compared to within patches (poste-
rior means 0.67 and 0.62, Table 2). The spatio-temporal
random effect explained more variation in occupancy among
patches than within (0.20 and 0.10), while for abundance
their relationship was reversed (0.08 and 0.17). This sug-
gests that the random effects explain long-term differences in
occupancy over the study region while for abundance there
is more yearly varying spatially structured stochasticity. We
see the same relationship from the model hyperparameters:
the spatio-temporal random field for the occupancy model
had higher temporal autocorrelation (posterior mean 0.92,
Supplementary material Appendix 9 Table A6) than the
model for abundance (0.38) and correlation distance for
occupancy (6.1km) was longer than for abundance (4.4km).
The temporal means, trend and variance of the random
effects differed spatially between the occupancy and abun-
dance models (Fig. 3). The occupancy model’s spatio-tem-
poral random effect had clear and stable structure, whose
mean clearly differentiated areas where the butterfly occurs
from unoccupied regions of the landscape. For the abun-
dance model, the temporal variation in the spatio-temporal
random effect swamped any permanent large-scale structure
(Supplementary material Appendix 10 Fig. A4).

In general, unexplained and random variability both
within and especially among patches, was higher for the
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abundance model (Table 1). The standard deviations of the
patch, yearly and spatio-temporal random effects differed
less from each other in the abundance model than in the
occupancy model, where the spatio-temporal random effect
clearly had the highest variance (Supplementary material
Appendix 9 Table A6). Together with the lower temporal and
spatial autocorrelation, the variance parameters also imply a
much higher annual variation of the random effects for the
abundance model.

The relationship between log abundance and log odds of
occupancy within patches was linear, suggesting an exponen-
tial relationship between the odds of occupancy and abun-
dance within patches (Fig. 4). The relationship would deviate
from linearity if the effects of the covariates differed strongly
between occupancy and abundance or the distribution of
covariates in unoccupied habitat was very different.

Discussion

Our results demonstrate that while similar facets of environ-
mental heterogeneity affect both occupancy and abundance,
their relative roles differ in the Glanville fritillary metapopula-
tion. With the notable exception of the strong role of habi-
tat quality, landscape properties affect occupancy more than
habitat patch characteristics, while abundance is determined
both by local and landscape properties, with habitat quality
one local factor among many.

We find very little unstructured variation among patches
in the occupancy model: the model covariates and the spatio-
temporal random effect explain most variation. Given the
strong correlation of the spatio-temporal random field with
our connectivity measure and population covariates, we can
say that previous year’s population size, patch area, habitat
quality and connectivity are the main drivers of occupancy,
as expected in a classic metapopulation (Hanski 1999).
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Figure 3. Summary of the spatio-temporal random fields for occupancy (a, ¢) and abundance (b, d). Panels (a), (b) show the mean of the
spatial field over the years, panels (c—d) show the mean of annual changes of the spatial field over the years. We standardized the occupancy
and abundance spatio-temporal random fields to unit variance before calculating the means and trends. Thus, the differences between
occupancy and abundance are due to differences in the structure of the spatial field and not their differing magnitudes. Coastline data
National Land Survey of Finland’s (NLS) topographic database (acquired 08/2017). The grid lines in panel (b) show the position of the

Aland Islands in the World Geodetic Coordinate System (WGS-84).

In the case of abundance, the strong role of the random effects
in within-patch variation suggests that the covariates used do
not capture the full range of variation in local abundance.
That unexplained variation can come in many guises such
as unmeasured variation in landscape structure and habitat,
or unaccounted interactions of the covariates with population
dynamic processes such as when landscape structure affects
dispersal (Conradt et al. 2000, Luoto et al. 2006, Stasek et al.
2008, Dileo et al. 2018). Weather is another important
missing factor, which affects butterfly population dynam-
ics during most life stages (Heinrich 1993, Hellmann et al.
2004, Kuussaari et al. 2004) — also in the Aland Islands
(Nieminen et al. 2004, Kahilainen et al. 2018). Interestingly,
the spatio-temporal random field in the occupancy model is
rather stable across the years, suggesting that the effects of
climatic variation differ between occupancy and abundance.
The effects on occupancy are limited to large-scale annual

differences with limited spatial variation, while for abundance
the effects are more variable and also more local due to, for
example, behavioural interactions with the local topography
and microclimate (Eilers et al. 2013, Lawson et al. 2014).
Any effects on abundance will also have indirect impacts on
occupancy: for example, if summer drought reduces the quantity
and quality of host plant available for larvae, the consequent
reduction in abundance would also increase extinction risk in
the next year (Salgado and Saastamoinen 2019).

Within-population occupancy-abundance
relationships

In systems with sufficient turnover, such as classic metapopu-
lations, occupancy—abundance relationships can be observed
already at the level of local populations. In our system the
qualitatively similar responses of occupancy and abundance
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Figure 4. Observed and predicted within-patch occupancy—abundance relationships. The observed values are calculated for all patches
occupied at least once, and their mean abundance is calculated only over the occupied years. The correlation between observed log odds and
log abundance is 0.69 (n=2022). The predicted values are patch means of the linear predictors calculated over all the observations
(occupancy) or all occupancy observations (abundance). The correlation between the posterior means of the predicted log odds and

predicted log abundance is 0.71 (n=2027).

to environmental heterogeneity result in a noisy and non-lin-
ear, yet consistent, relationship between average occupancy
and abundance within patches. In general, patches that have
higher average occupancy have higher average abundance.
This suggests that average occupancy can be a reasonable sur-
rogate for mean abundance, which has also been shown in
studies of other butterflies and species (Oliver et al. 2012,
Gutiérrez et al. 2013). While it is harder to envision how
negative within-population occupancy—abundance relation-
ships would arise, lack of any clear relationship would sug-
gest that the time series is too short compared to the lifespan
of the study species or point to a drastic decline of habitat
quality, such that overall average occupancy decreases and is
independent of abundance before the decline.

A positive within-population  occupancy—abundance
relationship could follow from variation in growth rates or
dispersal, mechanisms which are shown to generate posi-
tive within- and among-species occupancy—abundance rela-
tionships (Hanski and Gyllenberg 1993, Holt et al. 1997).
Habitat patches with lower average growth rates have both
smaller populations on average and go extinct more often;
where immigration plays a strong role, low-quality or iso-
lated habitat harbours occasional sink populations, while
well connected habitat has inflated population sizes and high
recolonization rates. In a wider context, the within-population
relationship would then lead to a positive within-species
occupancy—abundance relationship if mean growth rates or
connectivity vary among different landscapes.

Effect of abundance on occupancy

While occupancy is more predictable — in terms of varia-
tion explained by covariates — the large effect size of popula-
tion size in the previous year suggests that the stochasticity
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of abundance flows over into the occupancy model. While
patch area and previous occupancy as surrogates for popula-
tion size can suffice for predicting average occupancy — and
thus average abundance — predictions of yearly changes in
occupancy ignorant of population sizes would be biased
towards the average case. Our result align with that of
Oliver et al. (2012), who found that even when occupancy
models predict mean population densities they do not cap-
ture long-term stability very well. Generally, this calls for
caution when using occupancy as a surrogate for abun-
dance in some contexts. Occupancy as means to discover
environmental associations and to rank habitat in terms of
quality is not very sensitive to assumptions about under-
lying relationship to abundance (Pearce and Ferrier 2001,
Harrison et al. 2011). But trying to predict extinction
dynamics of individual populations and estimate actual,
not average, abundances using the same models could lead
to biased estimates and higher uncertainty (Harrison et al.
2011, Bried and Pellet 2012). Thus, in the case of stochastic
patch occupancy models, we should question these assump-
tions based on the intended use of the model as well as their
biological plausibility (Hanski 1999, Gaggiotti and Hanski
2004, Ovaskainen and Hanski 2004a, b).

Habitat quality and occupancy

Habitat quality, especially host plant abundance, has a strong
role in determining occupancy: a quarter of all observations
represent the lowest host plant abundance, but of occupied
habitat only five percent fall into the lowest abundance class.
This suggests a habitat quality threshold below which it is
unlikely that patches become or stay occupied. Some of the
possible explanations for such a threshold are that, the poten-
tial habitat patches are of such low quality that the butterfly



can only rarely, if ever, complete the larval stages of its life-
cycle with the resources available, or that dispersing females
are much less likely to find or choose low quality habitat,
due to lack of suitable resources or absence of conspecifics
(Kuussaari et al. 1996). A similarly stark contrast was found in
relationship between host plant abundance and the presence
of the Clouded Apollo (Luoto et al. 2001) and Oberthiir’s
grizzled skipper (Fourcade and Ockinger 2017). In terms of
notable land use effects, roads and surrounding agricultural
lands increased occupancy, possibly due to increased connec-
tivity between patches (DiLeo et al. 2018). In contrast, sur-
rounding agriculture decreased abundance, possibly due to
higher emigration rates (Kuussaari et al. 1996). These results
reaffirm the need to account for population dynamics in
attempting to study habitat quality and ic’s interaction with
landscape context, both in terms of understanding the direct
relationship between population density and habitat quality,
as well as population density and emigration and immigra-
tion rates (Van Horne 1983).

Analysis of variance

Our results underline that effect sizes and analysis of variance
are not substitutes for each other, but complementary tools
in observational studies, and must be interpreted in light of
the ecology of the study system and the distribution and spa-
tial structure of the covariates. For example, despite having
a large effect size, having both host species present contrib-
utes little to overall variation, as within our study system in
the Aland Islands one of the host plants, Veronica spicata, is
not as widely distributed as the other, Plantago lanceolata;
both are simultaneously present in only 16 percent of obser-
vations. Similarly, land use covariates, which show strong
effects on occupancy, but due to a rather homogeneous land-
scape in areas where suitable habitat is found, explain very
lictle variation in population dynamics. This would explain
why Moilanen and Hanski (1998) did not find any model
improvement from adding landscape composition to their
stochastic patch occupancy model of the same system.

Conclusions

Separating patterns of occupancy and abundance is the first
step in determining the relationship between occupancy and
abundance and how it responds to environmental heteroge-
neity. Given sufficiently reliable data, in terms of detection
rate, the hurdle model provides a good basis for a statistical
approach to this problem (Welsh et al. 1996). We emphasize
the use of the hurdle model as a tool for meaningfully separat-
ing drivers of occupancy and abundance patterns, instead of
concentrating on the so called zero inflation of the distribution
of count data. We also advocate the use of spatio-temporal ran-
dom effects to partially compensate for the effects of suitable,
but unoccupied, habitat on covariate coefficient estimates, in
the presence of dispersal and potential unmeasured covariates.

In our system, conditional on occupancy, unexplained
variation in abundance has no strong spatial structure, while

the unexplained spatio-temporal variance in occupancy is
rather stable when excluding noise due to variation in abun-
dance. This suggests that in some cases spatial structure esti-
mated in abundance-only species distribution models would
lead to a compromise mixing two different patterns that arise
from partially different processes.

A positive relationship between average occupancy and
abundance within local populations can arise from the rela-
tionship between local abundance and extinction rate, or
immigration and the extinction and colonization rates. The
relationship we observed is noisy and non-linear, and sug-
gests that in spite of the consistency of the relationships,
occupancy is not always a good surrogate for abundance in a
dynamic modelling context
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